Hiệu chỉnh và mở rộng Phương_pháp_Euler

Một hiệu chỉnh đơn giản của phương pháp Euler loại bỏ các vấn đề ổn định đã lưu ý trong phần trước là phương pháp Euler lùi lại (backward):

y n + 1 = y n + h f ( t n + 1 , y n + 1 ) . {\displaystyle y_{n+1}=y_{n}+hf(t_{n+1},y_{n+1}).}

Phương pháp này khác với phương pháp Euler (tiêu chuẩn, hoặc tiếp tới) là hàm f {\displaystyle f} được đánh giá tại điểm cuối của bước, thay vì điểm xuất phát. Phương pháp Euler lùi lại là một phương pháp ẩn, có nghĩa là công thức của phương pháp Euler lùi lại có y n + 1 {\displaystyle y_{n+1}} ở cả hai bên, vì vậy khi áp dụng phương pháp Euler lùi lại chúng ta phải giải một phương trình. Điều này làm cho việc thực hiện tốn kém (thời gian,...) hơn.

Những hiệu chỉnh khác của phương pháp Euler đối với sự ổn định đã đưa đến phương pháp Euler mũ hoặc phương pháp Euler bán ẩn.

Các phương pháp phức tạp hơn có thể đạt được bậc cao hơn (và chính xác hơn). Một khả năng đó là sử dụng nhiều hơn các đánh giá hàm. Điều này được minh họa bằng phương pháp điểm giữa đã được đề cập trong bài viết này:

y n + 1 = y n + h f ( t n + 1 2 h , y n + 1 2 h f ( t n , y n ) ) . {\displaystyle y_{n+1}=y_{n}+hf{\Big (}t_{n}+{\tfrac {1}{2}}h,y_{n}+{\tfrac {1}{2}}hf(t_{n},y_{n}){\Big )}.}

Điều này dẫn đến họ của các phương pháp Runge-Kutta.

Một khả năng khác là sử dụng nhiều hơn các giá trị quá khứ, như được minh họa bằng phương pháp Adams-Bashforth hai bước: 

y n + 1 = y n + 3 2 h f ( t n , y n ) − 1 2 h f ( t n − 1 , y n − 1 ) . {\displaystyle y_{n+1}=y_{n}+{\tfrac {3}{2}}hf(t_{n},y_{n})-{\tfrac {1}{2}}hf(t_{n-1},y_{n-1}).}

Điều này dẫn họ của các phương pháp đa bước tuyến tính.